Create a tidy data frame with a correlations and IV
Arguments
- dt
- A data frame to apply `scorecard::woebin_ply` and calculate correlations. 
- bins
- An output from `scorecard::woebin` to create woe variables 
- upper
- upper 
- plot
- plot 
Examples
if (FALSE) {
  data(germancredit, package = "scorecard")
  vars <- c(
    "creditability", "duration.in.month", "credit.history",
    "purpose", "status.of.existing.checking.account", "property"
  )
  dat <- germancredit[, vars]
  bins <- woebin2(dat, y = "creditability", stop_limit = 0.0000001)
  woebin_cor_iv(dat, bins)
  datcor <- woebin_cor_iv(dat, bins)
  library(dplyr)
  cor_limit <- 0.15
  datcor %>%
    filter(variable_1 != variable_2) %>%
    mutate(
      cor_conflict = ifelse(abs(cor) > cor_limit, TRUE, FALSE),
      variable_to_remove = ifelse(
        cor_conflict,
        ifelse(iv_variable_1 > iv_variable_2, variable_2, variable_1),
        NA
      )
    )
}