Fit classification random forest to klassets_response_xy
object
Source: R/response_xy.R
fit_classification_random_forest.Rd
Fit classification random forest to klassets_response_xy
object
Usage
fit_classification_random_forest(
df,
type = "prob",
ntree = 500L,
maxdepth = NULL,
trace = FALSE,
...
)
Arguments
- df
A object from
sim_response_xy
.- type
Type of prediction, one of prob, response, node.
- ntree
Number of trees to grow for the forest.
- maxdepth
Max depth of each trees.
- trace
A logical indicating if a progress bar shall be printed while the forest grows.
- ...
Options for
ranger::ranger
.
Examples
set.seed(123)
df <- sim_response_xy(n = 1000, relationship = function(x, y) x**2 > sin(y))
plot(df)
dfcrf <- fit_classification_random_forest(df)
dfcrf
#> # A tibble: 1,000 × 4
#> response x y prediction
#> <fct> <dbl> <dbl> <dbl>
#> 1 FALSE -0.425 -0.453 0.953
#> 2 FALSE 0.577 0.188 0.754
#> 3 FALSE -0.182 -0.680 0.696
#> 4 FALSE 0.766 0.707 0.188
#> 5 TRUE 0.881 0.695 0.646
#> 6 TRUE -0.909 -0.0442 0.900
#> 7 FALSE 0.0562 0.547 0.0358
#> 8 FALSE 0.785 -0.409 0.959
#> 9 FALSE 0.103 -0.869 0.661
#> 10 TRUE -0.0868 -0.119 0.691
#> # … with 990 more rows
plot(dfcrf)